A rotary pumping model for helicase function of MCM proteins at a distance from replication forks.
نویسندگان
چکیده
We propose an integrated model for eukaryotic DNA replication to explain the following problems: (1) How is DNA spooled through fixed sites of replication? (2) What and where are the helicases that unwind replicating DNA? (3) Why are the best candidates for replicative helicases, namely mini-chromosome maintenance (MCM) proteins, not concentrated at the replication fork? (4) How do MCM proteins spread away from loading sites at origins of replication? We draw on recent discoveries to argue that the MCM hexameric ring is a rotary motor that pumps DNA along its helical axis by simple rotation, such that the movement resembles that of a threaded bolt through a nut, and we propose that MCM proteins act at a distance from the replication fork to unwind DNA. This model would place DNA replication in a growing list of processes, such as recombination and virus packaging, that are mediated by ring-shaped ATPases pumping DNA by helical rotation.
منابع مشابه
Mcm4 C-terminal domain of MCM helicase prevents excessive formation of single-stranded DNA at stalled replication forks.
The minichromosome maintenance (MCM) helicase, composed of subunits Mcm2-7, is essential for the initiation and elongation phases of DNA replication. Even when DNA synthesis is blocked, MCM continues DNA unwinding to some extent for activation of the replication checkpoint and then stops. However, the mechanism of regulation of MCM-helicase activity remains unknown. Here, we show that truncatio...
متن کاملDistinct roles for Sld3 and GINS during establishment and progression of eukaryotic DNA replication forks.
The Cdc45 protein is crucial for the initiation of chromosome replication in eukaryotic cells, as it allows the activation of prereplication complexes (pre-RCs) that contain the MCM helicase. This causes the unwinding of origins and the establishment of DNA replication forks. The incorporation of Cdc45 at nascent forks is a highly regulated and poorly understood process that requires, in buddin...
متن کاملDpb2 Integrates the Leading-Strand DNA Polymerase into the Eukaryotic Replisome
BACKGROUND The eukaryotic replisome is a critical determinant of genome integrity with a complex structure that remains poorly characterized. A central unresolved issue is how the Cdc45-MCM-GINS helicase is linked to DNA polymerase epsilon, which synthesizes the leading strand at replication forks and is an important focus of regulation. RESULTS Here, we use budding yeast to show that a conse...
متن کاملArchaeal MCM Proteins as an Analog for the Eukaryotic Mcm2–7 Helicase to Reveal Essential Features of Structure and Function
In eukaryotes, the replicative helicase is the large multisubunit CMG complex consisting of the Mcm2-7 hexameric ring, Cdc45, and the tetrameric GINS complex. The Mcm2-7 ring assembles from six different, related proteins and forms the core of this complex. In archaea, a homologous MCM hexameric ring functions as the replicative helicase at the replication fork. Archaeal MCM proteins form therm...
متن کاملHelicase activation and establishment of replication forks at chromosomal origins of replication.
Many replication proteins assemble on the pre-RC-formed replication origins and constitute the pre-initiation complex (pre-IC). This complex formation facilitates the conversion of Mcm2-7 in the pre-RC to an active DNA helicase, the Cdc45-Mcm-GINS (CMG) complex. Two protein kinases, cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK), work to complete the formation of the pre-IC. Each...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EMBO reports
دوره 4 1 شماره
صفحات -
تاریخ انتشار 2003